C~1保单调有理三次插值C~1 Monotonicity Preserving Rational Cubic Interpolation
邓四清
摘要(Abstract):
本文提出一种构造C1保单调的有理三次插值函数的方法 ,所构造的插值函数分子分母都是三次多项式。由于函数表达式中含有调节参数 ,这使得插值曲线更具灵活性。
关键词(KeyWords): 保单调插值;有理三次多项式;调节参数
基金项目(Foundation):
作者(Author): 邓四清
参考文献(References):
- [1]F .N .FritschandR .E .Carlson,MonotonePiecewiseCubicInterpolation[J].SIAMJ .Nun,Anal1980,17:238-246.
- [2]ELI.Passow,MonotoneQuadraticSplineInterpolation[J].J .ApproximationTheory.1977,19:143-147.
- [3]L .L .Schumaker,OnshapePreservingQuadraticSplineInter polation[J].SIAMJ .Num,Anal.1983,20(4)
- [4]方逵等单调光滑函数的保形插值算法[J].国防科学大学学报,1992,14(4)
- [5]DuanQi,K .Djidjeli,Price,W .G ,andTwizell,E .E .Ratio nalCubicSplineBasedonFunctionValues[J].Computers&Graphics,1998,22(4)479-486.
- [6]DuanQi,K .Djidjeli,Price,W .G .,etal,TheApproximationPropertiesofSomeRationalCubicSplines[J].Internat.J .Compu.Math.1999,72:155-166.
- [7]Gregory.J.A .Sarfraz,M .andYuen,P .K ,InteractiveGurveDesignUsingC2RationalSplines.[J].Computers&Graph ics.1994,18(2)153-159.
- [8]Delbourgo.R .andGregroy.J.A ,C2RationalQuadraticSplineInterpolationToMonotonicData[J].IMAJ .Num,Anal1983,3:141-152.